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A B S T R A C T   

Daily real-time nowcasts (current conditions) and 2-day forecasts of environmental conditions in the Chesapeake 
Bay have been continuously available for 4 years. The forecasts use a 3-D hydrodynamic-biogeochemical model 
with 1–2 km resolution and 3-D output every 6 h that includes salinity, water temperature, pH, aragonite 
saturation state, alkalinity, dissolved oxygen, and hypoxic volume. Visualizations of the forecasts are available 
through a local institutional website (www.vims.edu/hypoxia) and the MARACOOS Oceans Map portal (https:// 
oceansmap.maracoos.org/chesapeake-bay/). Modifications to real-time graphics on the local website are 
routinely made based on stakeholder input and are formatted for use on a mobile device. Continuous model input 
files were developed from daily real-time forecast input files, for hindcast simulations and efficient evaluation 
and improvement of the real-time model. This manuscript describes the setup of the environmental forecasting 
system, how the model accuracy has been improved, and the revision of online graphics based on stakeholder 
feedback.   

1. Introduction and motivation 

The Chesapeake Bay (Bay, Fig. 1) is the largest, most productive, and 
most biologically diverse estuary in the continental United States, 
providing crucial habitat and natural resources for native and migratory 
species (Boesch et al., 2001; Kemp et al., 2005). Natural economic 
benefits derived from the Bay are estimated to be valued at more than 
$100 billion annually (CBF, 2014). The Bay supports economically 
important fisheries, with blue crabs, Striped Bass and oysters generating 
the greatest revenue (Dewar et al., 2009). Shellfish aquaculture is also 
growing rapidly (Hudson and Murray, 2016). In addition, Bay waters 
enhance coastal property values and support a vital tourist economy, 
including nature-based recreation industries (Klemick et al., 2018). 

The many uses of the Bay result in diverse groups of stakeholders 
interested in both protecting and using the Bay. However, temporally 
and spatially varying environmental conditions can impact how 
different stakeholders make daily decisions regarding their usage of the 
Bay’s resources. For example, seasonal hypoxia (dissolved oxygen (DO) 
< 2 mg/L) occurs annually between May and October in the deeper 
channel of the Bay (Hagy et al., 2004; Officer et al., 1984). Even in the 
absence of direct mortality, hypoxia reduces the catch per unit effort of 

bottom-feeding fish and constrains the locations of productive fishing 
grounds (Buchheister et al., 2013). Anglers are seeking ways to receive 
improved information on temperature, salinity, and DO so they can 
make informed decisions in near real time. Additionally, both native and 
cultured oysters are vulnerable to negative effects from coastal acidifi
cation (Beck et al., 2009; Barton et al., 2015). A link between episodes of 
poor water quality and enhanced oyster mortality has been noted in 
recent years, although the problem is not yet well understood (Wheeler 
2011; Munroe 2013). Hatchery operators have expressed enthusiasm for 
web-based forecasts of key environmental parameters to help guide their 
daily decision making. 

Real-time environmental forecasting systems based on numerical 
hydrodynamic and biogeochemical (water quality) models have the 
potential to provide valuable information to both assist stakeholders in 
planning their daily activities and help decision-makers continuously 
track environmental conditions in real time. For example, LiveOcean 
forecasts environmental conditions throughout Puget Sound, the coastal 
ocean, and Willapa Bay (LiveOcean, 2020). Another example is the 
Chesapeake Bay Operational Forecast System (CBOFS) which is run 
every 6 h by the National Oceanic and Atmospheric Administration 
(NOAA) and is used primarily for forecasting water levels for navigation, 
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but is also used to evaluate the chance of encountering stinging jellyfish 
(NOAA, 2020a; NOAA, 2020b). Other examples of real-time forecasting 
are the Ocean Circulation, Ecosystem and Hypoxia around Hong Kong 
waters system (HKUST, 2020) and various systems in the Mediterranean 
Sea (Tintore et al., 2019; MFS, 2020). Forecasts of the Mediterranean 
Sea are used by a variety of stakeholders, including port managers for 
evaluating extreme events, tourism operators and recreational users to 
understand conditions on the water, and various users for responding to 
emergencies (e.g., oil spills) (Tintore et al., 2019). 

This paper describes a real-time Chesapeake Bay Environmental 
Forecast System (CBEFS) and discusses recent improvements to the 
forecast system, both in model accuracy and graphical visualizations for 
stakeholders. CBEFS has provided daily nowcasts (current conditions) 
and 2-day forecasts of environmental conditions throughout the Bay 
since February 2017, with model output and online graphics formatted 
based on stakeholder requests and continually expanded through time. 
CBEFS uses a 1–2 km horizontal grid and provides 6-hourly 3-D output. 
The starting CBEFS configuration was based on the well-established 
Chesapeake Bay Regional Ocean Modeling System (ChesROMS) Estua
rine Carbon Biogeochemistry (ECB) model (Feng et al., 2015). However, 
CBEFS uses different inputs than the published ChesROMS-ECB setups 
used in other applications (e.g. Da et al., 2018); therefore, it has been 
independently evaluated to ensure similar model accuracy to other 
implementations, as well as to other well-established models of the Bay 

(Irby et al., 2016) that only run hindcasts (simulations of past 
conditions). 

2. CBEFS implementation and configuration 

2.1. Hydrodynamic and biogeochemical model implementations 

CBEFS is based on a 3-D Chesapeake Bay implementation of the 
open-source community Regional Ocean Modeling System (ChesROMS; 
Xu et al., 2012) hydrodynamic model, including 20 vertical levels on a 
horizontal grid with highest resolution (430 m) in the northern Bay and 
roughly 1 km resolution in the middle and southern Bay (Fig. 2). The 
main ROMS input file with the input parameters is provided in the 
supplementary information. CBEFS uses the ECB and Simplistic Respi
ration Rate (SRM) modules to simulate biogeochemistry (with DO) and 
only DO, respectively. The average DO from the ECB and SRM modules 
is used for graphics and hypoxic volume calculations. 

ECB is a full biogeochemical module that contains inorganic and 
organic carbon and nitrogen state variables, including particulate 
(detritus, phytoplankton, and zooplankton) and dissolved forms (ni
trate, ammonium, dissolved inorganic carbon, and dissolved organic 
matter) (Feng et al., 2015; Irby et al., 2018; Da et al., 2018). In addition, 
inorganic suspended solids, DO, and alkalinity are included as state 
variables. The inclusion of inorganic carbon and alkalinity as state 
variables is critical to successfully simulating the CO2 system and 
associated acidification metrics (pH, aragonite saturation state (ΩAR)). 
ECB has continually been improved as part of ongoing research 
(St-Laurent et al., 2020; Moriarty et al., 2021; Kim et al., 2020; Turner 
et al., 2021). Following relevant modifications to ECB, the ECB com
puter code, parameters, or nutrient inputs in CBEFS are updated to the 
current research version to incorporate incremental improvements. 
Modifications to the complex ECB computer code are incorporated into 
the forecast system by creating a new executable based on the 
best-available research version and using that executable in CBEFS from 
that day forward. Depending on the amount of changes to ECB, updating 
the ROMS hydrodynamic model code may also be incorporated into the 
new executable. 

The SRM module simulates DO using a simplistic approach based on 
Scully (2013). As part of a multiple model intercomparison (Luettich 
et al., 2013, 2017), the SRM approach has been shown to simulate DO 
and hypoxic volumes with similar accuracy to mechanistic coupled 
hydrodynamic-biogeochemical models (Bever et al., 2013; Irby et al., 
2016). The initial SRM approach based on Scully (2013) used a 
temporally- and spatially-constant respiration rate. However, the 
respiration rate prescribed to simulate summer-time hypoxia was too 
high for simulating winter bottom DO. In the CBEFS implementation of 
the SRM module, DO is consumed using a prescribed spatially uniform 
but temporally-varying respiration rate that repeats each year. The 
prescribed respiration rate is higher in summer than in winter, which 
better captures the seasonal patterns in bottom DO. DO in the model 
surface layer is set to saturation based on water temperature and 
salinity. 

The CBEFS standalone hydrodynamic and biogeochemical ROMS 
modeling system requires nowcast and forecast boundary conditions 
(input files) daily (Table 1). A technique was developed to utilize the 
hydrodynamic input files already being created by NOAA for CBOFS to 
use as boundary conditions for CBEFS, thus leveraging work already 
being conducted operationally by NOAA. CBOFS runs every 6 h and 
simulates hydrodynamic conditions throughout the Bay (Lanerolle et al., 
2009, 2011; NOAA, 2020a). The input files for CBOFS are retrieved from 
NOAA (2020c), appended together, and reformatted using a combina
tion of shell scripts, Network Common Data Form (NetCDF) Operators, 
and MATLAB scripts. These reformatted files provide the inputs for the 
hydrodynamic component of CBEFS. Meteorology is from the North 
American Mesoscale (NAM) model (EMC, 2020). Tributary freshwater 
inflow and temperature are based on observed U.S. Geological Survey 

Fig. 1. Chesapeake Bay and relevant tributaries.  
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(USGS) gauge data (USGS, 2020), with the inflow volumes then scaled to 
better capture the total terrestrial freshwater inflow to the Bay 
(described in Section 3.1.1). Freshwater inflows for the forecast period 
of each daily simulation are held constant, based on the inflows during 
the nowcast period. Tides at the open boundary are derived from the 
Advanced Circulation model (ADCIRC, Luettich et al., 1992) and 
non-tidal water levels are from the Extratropical Storm Surge Model 
(OPC, 2019). Ocean boundary temperature and salinity are from the 
Global operational Real-Time Ocean Forecast System (RTOFS) (NWS, 
2019). 

The inputs necessary for the CBEFS implementation of ECB are the 
same as those necessary for the research version referenced above. 
However, because CBOFS includes only hydrodynamic fields, biogeo
chemical inputs for CBEFS must be obtained from other sources. 
Riverine concentrations of biogeochemical variables (excluding DIC and 
alkalinity) for the 13 tributaries included in CBEFS are specified based 
on climatological values derived from the Dynamic Land Ecosystem 
Model (DLEM; Tian et al., 2015; Yang et al., 2015a, 2015b; Feng et al., 
2015). DIC and alkalinity riverine inputs are based on St-Laurent et al. 

(2020) and repeat 2014 for each subsequent year. At the ocean 
boundary, climatological values based on Da et al. (2018) and St-Laur
ent et al. (2020) are used. Tributary and ocean boundary DO concen
trations are set to saturation. Atmospheric nitrogen deposition is based 
on Da et al. (2018) and repeats the last available year (2014) for each 
subsequent year. Input parameters for the ECB model are the same as 
described in St-Laurent (2020). The ROMS biology.in file with param
eter values is provided in the supplemental information. 

2.2. Forecast system configuration 

CBEFS runs in a Linux environment and uses the cron software utility 
to automatically run shell scripts at specific times of the day to 
completely automate the CBEFS workflow (Fig. 3). NetCDF operators (i. 
e., NetCDF kitchen sink [ncks]) are used to efficiently modify NetCDF 
input and output files. The sed command is used to replace dates in a 
generic ROMS text input file so the simulation starts on the correct day. 
MATLAB is used to further preprocess/postprocess model input/output 
files and generate portable network graphics (png) files for online 

Fig. 2. General setup of CBEFS.  

Table 1 
Major boundary conditions and inputs needed to run the hydrodynamic and biogeochemical models.  

Input Variables Initial Source Source Resolution 

Atlantic Ocean Boundary Tides Advanced Circulation Model 37 Tidal Harmonics; 
Variable (~5 km near Chesapeake Bay Open Boundary) 

Non-tidal Water Levels Extratropical Storm Surge Model Hourly; 
Interpolation Between Duck NC and Ocean City MD 

Salinity and Temperature Global operational Real-Time Ocean Forecast System Hourly; 
1/12◦

Biogeochemistry Climatology Monthly or Daily; 
Spatially Constant 

Atmospheric Meteorology North American Mesoscale Model 3-hourly; 12 km (Prior to January 2018) 
Hourly; 3 km (After January 2018) 

Nitrogen Deposition Climatology from Da et al. (2018) Daily; 
Spatially Constant 

River Inflow Discharge USGS Hourly 
Temperature Climatology or USGS Daily or Hourly; 

Spatially Variable 
Biogeochemistry Dynamic Land Ecosystem Model Climatology Temporally Constant to Monthly; 

Spatially Constant or Spatially Variable  
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visualization. The CBEFS workflow uses Linux command line function 
calls whenever possible because they can be completed without having 
to request high-performance computing (HPC) time through a job 
scheduler or use a separate dedicated workstation computer (i.e., 
minimize the use of MATLAB), and thus can be done more efficiently 
and reliably. 

Using local HPC resources, CBEFS simulates 3 days nightly, including 
a 1-day nowcast and 2-day forecast. The nowcast is a simulation 
extending through midnight using the best available inputs. Each suc
cessive nowcast restarts from the end of the nowcast for the prior day. 
Throughout the day, the forecast system retrieves necessary information 
from a NOAA ftp page for model inputs using the wget command. At 
night, the information is reformatted into CBEFS input files, the ECB and 
SRM simulations are run through the high-performance computing job 
scheduler, additional post-processing of model output is conducted, 
checks are conducted to determine whether the forecast was successful 
(with appropriate notification emails sent automatically via the shell 
scripts), and graphics for online visualization are generated (Fig. 3). 

Following completion of the daily forecast, pH and ΩAR are calcu
lated using CO2SYS (Lewis and Wallace, 1998), as implemented in 
MATLAB, and appended to the ECB NetCDF output files using a NetCDF 
operator. Graphics designed for online visualization are created from the 
CBEFS NetCDF output files via Linux shell scripts running MATLAB 
scripts. Image files of the graphics are displayed in real time on the 
internet through a local institutional website (VIMS, 2020) and sepa
rated into various pages based on the information conveyed. The web
site and graphics are designed for ease of use on a mobile device and are 
revised as stakeholders provide feedback on what is most useful and 
easily interpreted (Section 4). 

The Mid-Atlantic Regional Association Coastal Ocean Observing 
System (MARACOOS) downloads the model output daily, with visuali
zation of the forecast output available through the Chesapeake Bay 
Oceans Map webpage (MARACOOS, 2020a). This webpage allows for 
viewing each of the vertical levels of model output, simple real-time 
model-data comparison at discrete locations, and comparing tempera
ture and salinity from CBEFS to CBOFS at discrete locations. The VIMS 
and MARACOOS websites are complementary and provide different 

features for use by stakeholders. Instantaneous NetCDF output files for 
select CBEFS variables are provided publicly through a Thematic 
Real-time Environmental Distributed Data Services (THREDDS) data 
server (MARACOOS, 2020b). 

3. Improvement of the real-time forecast system: model 
accuracy and refinement of model inputs 

3.1. Model improvements 

Accurate nowcasts (current conditions) are critical to accurately 
forecasting environmental conditions in a real-time model. Continuous 
input files spanning 2014 through 2017 were generated from the daily 
nowcast input files and were used to evaluate the forecast system and 
test potential improvements. This allowed for efficient continuous 
hindcasts to be conducted as if the simulation was being run in the 
forecast system. To improve model accuracy, two potential improve
ments were tested: 1) scaling river inflow to better represent total 
terrestrial freshwater inflow to the Bay; and 2) scaling wind speed to 
better match observed wind speeds over the Bay. Both scalings were 
developed to be relatively simple, facilitating incorporation into CBEFS. 
It is critical that these do not depend on additional real-time data or data 
and model results co-occurring in time because data are not available for 
the future to adjust forecast inputs. In sections 3.1.1 and 3.1.2 these two 
model improvements are individually discussed, and in the following 
sections (Sections 3.2 and 3.3) the increased accuracy of these im
provements is examined. 

3.1.1. Terrestrial freshwater inflows 
The USGS terrestrial freshwater inflow gauge data used for model 

inputs do not capture stream inflows to tributaries below the gauges, 
inflows from smaller streams, and overland flow to the Bay. It was hy
pothesized that better capturing the total amount of terrestrial fresh
water inflow to the Bay could improve model accuracy. To this end, 
daily-averaged terrestrial freshwater inputs from CBOFS based on 
USGS gauges were compared to estimates from DLEM that include these 
other sources of freshwater. DLEM estimated inflows were available for 

Fig. 3. Flowchart of the forecast system automated workflow. BGC stands for biogeochemistry.  
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the 8 primary tributaries of the 13 inflows included in the CBOFS input 
files, with the remaining 5 tributaries comprising only about 1% of the 
tributary freshwater flow to the Bay. For this comparison, all DLEM 
surface runoff was added to the estuarine model at the same locations as 
was the freshwater inputs from the CBOFS corresponding tributary. A 2- 
year overlap period of DLEM estimates and USGS inputs spanning 2014 
and 2015 was available for the comparison. This comparison demon
strated that using only the gauge data considerably underestimated the 
total terrestrial freshwater inflow to the Bay. 

A least-squares best-fit linear relationship between the DLEM esti
mates and the USGS gauge data was developed for eight tributaries, with 
each relationship indicating the inflow from the gauge data could 
generally be increased to account for both gauged versus ungauged 
drainage area (Fig. 4). Scaling factors were developed by calculating the 
inverse of the slope of the linear relationship, and constant offsets were 
determined using the intercept of the linear relationship (Table 2). The 
scaling factors were smallest for tributaries with gauge stations near the 
Bay with relatively little shoreline distance versus drainage area, such as 
the Susquehanna and Potomac Rivers. The scaling factors were largest 
for tributaries with gauge stations farther from the Bay and relatively 
large shoreline distance versus drainage area, such as the Choptank and 
Nanticoke Rivers. The tributary inflows derived from the CBOFS inputs 
were adjusted based on the scaling factors and offsets to generate inputs 
for CBEFS. These scaled inflows were used to examine the effect on 
model accuracy (Sections 3.2 and 3.3) and then incorporated into the 
daily CBEFS setup. 

3.1.2. Wind speed 
Gridded wind products often underestimate the wind speed over the 

waters of Chesapeake Bay, which Scully (2013) hypothesized was from 
not adequately representing the wind speed over water of the Ches
apeake Bay relative to the wind speed over land. We hypothesized that 
scaling the wind speed from NAM to more closely match observed wind 
speeds could improve the accuracy of the model. To this end, wind speed 
from the NAM gridded input was matched to 14 wind data locations 
around the Bay and relationships between the observed wind speed and 
NAM wind speed were developed for the time period from 2014 through 
2017. Twelve of the relationships indicated the NAM wind speed would 
better match observed winds if their magnitude was increased (scaling 
factor greater than 1), while the other two (located near the upstream 
end of the tidal Potomac River and near the C&D Canal) indicated a 
decrease in wind speed was required (scaling factor less than 1; Fig. 5). It 
is interesting to note the scaling factors that are less than one are located 
in areas with relatively little nearby water area, suggesting the scaling 
factors could be at least partially influenced by differences in wind speed 
over water relative to over land. Scaling factors from each of the 14 
relationships were interpolated spatially to each of the gridded 

meteorology input cells. For model stability constraints, 
spatially-interpolated scaling factors were required to be no larger than 
1.15 when adjusting the CBEFS inputs, because the CBEFS model setup 
does not include wetting and drying. CBEFS input NAM wind speeds 
were multiplied by the spatially-varying scaling factors to examine the 
effect on model accuracy. Wind direction was unchanged. 

3.2. Hindcast simulations for evaluating model accuracy 

Hindcast simulations spanning 2014 through 2017 were conducted 
for four scenarios, using: 1) the initial CBEFS setup based solely on the 
inputs reformatted from CBOFS (Initial CBEFS Setup); 2) scaled inflows 
only (Scaled Inflows); 3) scaled wind speed only (Scaled Winds); and 4) 
scaled inflows combined with scaled winds (Scaled Inflows and Winds). 
Model outputs from these four scenarios were compared to observed 
data to evaluate the model accuracy resulting from each set of inputs. 
Target diagram statistical analyses were used to assess model accuracy 
by comparing to observed bottom salinity, bottom temperature, and 
bottom DO collected by the long-term Water Quality Monitoring Pro
gram (WQMP) at 13 locations in the mainstem of the Bay (Irby et al., 
2016). Target diagrams were used to visualize model skill graphically 
and quantitatively, using the standard-deviation-normalized bias (biasN) 
and unbiased root-mean-squared-difference (ubRMSDN) (Jolliff et al., 
2009; Hofmann et al., 2008). The ubRMSDN is the RMSD after the bias 
between the modeled and observed values has been removed from the 
modeled values. The normalized RMSD (RMSDN) mathematically rep
resents the magnitude of the vector addition of the biasN and ubRMSDN, 
and is depicted graphically as the distance to the center of the circle 
(target). Thus, model estimates falling closer to the center of the circle 
are more accurate, and any point falling inside the circle of radius one 
(RMSDN<1) performs better than simply estimating the mean of the 

Fig. 4. Comparison of DLEM and USGS flows for the Potomac River.  

Table 2 
Scaling factors and offsets used to adjust USGS gauge data to better capture total 
terrestrial freshwater inflow. The Pamunkey and Mattaponi Rivers are summed 
to a single York River inflow.  

Tributary Scaling 
Factor 

Offset (m3/ 
s) 

2014 to 2017 Average Flow 
(m3/s) 

Potomac River 1.32 78.8 470 
Susquehanna River 1.38 − 130.6 1155 
James River 1.76 − 13.0 404 
Rappahannock 

River 
2.23 4.5 112 

York River 2.27 1.9 83 
Patuxent River 6.79 0.2 102 
Choptank River 11.75 − 0.1 83 
Nanticoke River 33.22 − 0.7 79 
Total Flow 2488  
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observations (Jolliff et al., 2009; Hofmann et al., 2008). Model accuracy 
was evaluated for each of the 4 years individually, and for all 4 years 
combined. The bias and RMSDN were used as general metrics to quan
titatively evaluate the relative accuracy of the four model scenarios. 

Only the near-bottom model to data comparison is presented here 
because bottom temperature and salinity are often more difficult to 
accurately model than the surface values and stakeholders are most 
interested in the bottom DO. Only DO from the ECB module was used for 
evaluating the effects of scaling inflows and wind speed on bottom DO. 
The respiration rate in the SRM module is calibrated based on the hy
drodynamics that result from the specified inputs; therefore, it was not 
appropriate to hold the SRM respiration rate constant and yet vary the 
hydrodynamic inputs and evaluate model accuracy. 

3.3. Model accuracy and incorporation into CBEFS 

On average, the Initial CBEFS Setup was biased slightly high for 

bottom salinity and bottom DO, with minimal bias in bottom tempera
ture (Table 3; Figs. 6 and 7A). RMSDN values for the Initial CBEFS Setup 
were similar to those provided in Irby et al. (2016) for nine different 
models (although Irby et al., 2016, evaluated different years), suggesting 
the Initial CBEFS Setup had similar accuracy to other models of the 
Chesapeake Bay. 

Although scaling the inflows (generally increasing terrestrial fresh
water inflow; Scaled Inflows scenario) had little effect on modeled bot
tom water temperature (Table 3; Fig. 6A), it did reduce the model bias 
and RMSDN for bottom salinity; however, the correlation between 
modeled and observed salinity remained relatively unchanged, relative 
to the Initial CBEFS Setup (Table 3; Figs. 6B and 7). In terms of bottom 
DO, scaling the inflows resulted in slightly lower concentrations, 
together with a lower bias and RMSDN relative to the initial CBEFS setup 
(Table 3; Fig. 6C). Overall, the RMSDN for bottom salinity and bottom 
DO was the lowest in the Scaled Inflows scenario. 

Scaling the wind speed (Scaled Winds scenario) also had little effect 
on modeled bottom water temperature (Table 3; Fig. 6A) and reduced 
the model bias and RMSDN for bottom salinity, with the correlation 
between modeled and observed values relatively unchanged, relative to 
the Initial CBEFS Setup (Table 3; Fig. 6B). However, scaling the wind 
speed resulted in increased bottom DO, increased bias, and increased 
RMSDN for bottom DO, relative to the Initial CBEFS Setup (Table 3; 
Fig. 6C). 

The combination of scaling inflows and wind speed (Scaled Inflows 
and Winds scenario) resulted in the lowest bias in modeled bottom 
temperature, yet had little effect on the correlation between modeled 
and observed values and on the RMSDN (Table 3; Fig. 6A). The combi
nation of scaling inflows and wind speed resulted in reduced bias and 
RMSDN in both bottom salinity and bottom DO, relative to the Initial 
CBEFS Setup (Table 3; Fig. 6B and C). 

The accuracy of the model for simulating nowcast conditions was 
improved through examining effects of scaling river freshwater inflow 
and wind speed on bottom salinity, bottom temperature, and bottom 
DO. Scaling the inflows alone resulted in the most accurate setup for 
bottom salinity and bottom DO, based on RMSDN (Table 3). The 
decrease in bottom DO bias of 0.71 mg/L is likely an ecologically sig
nificant improvement in the modeled DO. Management goals and sci
entific studies of the Bay are separated by about 1 mg/L DO based on the 
ecology of the Bay. For example, anoxia is classified as 0–0.2 mg/L, 1 
mg/L is the management threshold for deep channels during summer, 2 
mg/L is commonly used to designate the upper DO limit for hypoxic 
waters, 3 mg/L is the management threshold for deep-water seasonal 
fish and shellfish use, etc. (USEPA, 2017). An improvement of model 
bias of around 1 mg/L is then important both ecologically and in terms 
of Bay management goals. An improvement in the salinity bias of 1.45 is 
likely an ecologically important improvement in the salinity because it 
may either constrain or increase the area of suitable habitat for fishes 
(depending on the fish species) and can affect the water chemistry for 
shellfish. An improvement of 0.17 ◦C in the temperature bias is likely not 

Fig. 5. Location of wind data sources and the calculated scaling factors.  

Table 3 
Model evaluation statistics for 2014 through 2017 combined.  

Variable Scenario r2 bias RMSD RMSDN 

Bottom Temperature (◦C) Initial CBEFS Setup 0.99 0.30 0.99 0.12 
Scaled Inflows 0.99 0.13 1.03 0.13 
Scaled Winds 0.99 0.21 1.10 0.14 
Scaled Inflows and Winds 0.99 0.04 1.07 0.13 

Bottom Salinity Initial CBEFS Setup 0.75 2.25 2.85 0.87 
Scaled Inflows 0.76 0.80 2.04 0.62 
Scaled Winds 0.74 1.03 2.24 0.68 
Scaled Inflows and Winds 0.75 − 0.54 2.27 0.69 

Bottom Dissolved Oxygen (mg/L) Initial CBEFS Setup 0.88 1.04 1.68 0.45 
Scaled Inflows 0.90 0.33 1.23 0.33 
Scaled Winds 0.88 1.35 1.90 0.51 
Scaled Inflows and Winds 0.88 0.69 1.46 0.39  
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a notable improvement in modeled temperature but does work toward 
the goal of continual improvement in the forecast system and Bay 
modeling. 

Following this analysis, the scaling of the inflows was incorporated 
into the real-time CBEFS setup to incorporate this improvement into the 
forecast system. After converting the CBOFS input for use in CBEFS, the 
nowcast and forecast inflows are scaled based on the scaling described in 
Section 3.1.1. CBEFS has been running with scaled inflows since March 
2019. The comparison of modeled and observed bottom water temper
ature, bottom salinity, and bottom DO suggests that the CBEFS setup, 
both the initial setup and revised setup with scaled inflows, has similar 
accuracy to the range of hindcast models evaluated by Irby et al. (2016). 
RMSDN values from the CBEFS model-data comparison were within the 
range of, or lower than, values presented by Irby et al. (2016). However, 
the evaluation of different years in this study and Irby et al. (2016) only 
allows for a general comparison of model accuracy. 

4. Improvement and revision of graphics based on stakeholder 
feedback 

In order to be useful for stakeholders, the information provided from 
CBEFS needs to be in a concise and easy to interpret format. At the time 
of publication of this manuscript, the primary stakeholders of the fore
cast system were anglers, oyster aquaculturists, Bay management, and 
scientists. Stakeholders were engaged through in-person focus groups 
and follow up emails and discussions during various stages of 

development of CBEFS, facilitated by outreach specialists at the Virginia 
Institute of Marine Science. Early feedback from these stakeholders 
indicated they preferred a webpage format that would be easily acces
sible and viewed on a mobile device, to ensure the nowcast and forecast 
information could be used while at a dock or on a boat. The VIMS (2020) 
website is formatted in this way, both in terms of the page layouts and 
resolution of the graphics. 

Graphics are initially generated from CBEFS and discussed with 
stakeholders, who provide feedback for revising graphics. The initial 
focus of the CBEFS website was on bottom DO (Fig. 8), but feedback 
from anglers suggested that, based on their experience, it would be more 
useful to know the depth below the water surface at which oxygen 
concentrations exceeds 3 mg/L. With this information anglers could 
focus their efforts on waters with DO high enough (above 3 mg/L) for 
Striped Bass to be present. A minimum DO of 3 mg/L as suggested by the 
anglers matches well with fisheries-independent sampling that shows 
Striped Bass catch-per-unit-effort decreases below 3.5 mg/L (Bucheister 
et al., 2013). Vertical profile and map graphics were therefore developed 
to succinctly visualize the depth to 3 mg/L throughout the Bay (Fig. 9). 
Profiles provide a detailed view in the vertical at discrete locations, 
while the map view allows the anglers to relocate to an area of the Bay 
where fish will more likely be found. These graphics are also informative 
for visualizing mixing due to infrequent large summer storms. Before the 
passing of Hurricane Isais in August 2020, DO less than 3 mg/L extended 
to within 15–20 feet (4.6–6.1 m) of the water surface over a large 
portion of the Bay (Fig. 9A and B). The large amount of mixing resulting 

Fig. 6. Target diagrams displaying model accuracy for the four scenarios during 2014 through 2017 individually. Each marker shape represents a different year.  

Fig. 7. Relationships between observed and modeled bottom salinity at 13 long-term WQMP locations during 2017.  
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from the storm increased DO throughout the Bay. Following the passing 
of the storm, DO less than 3 mg/L extended to within about 30 feet (9.1 
m) of the water surface and the spatial extent of the occurrence of DO 
less than 3 mg/L was reduced (Fig. 9C and D). 

Stakeholders from the Chesapeake Bay management community also 
expressed interest in expanding DO visualizations to include hypoxic 
volume, the volume of Bay water with DO less than 2 mg/L, which can 
be continuously tracked by CBEFS in real time throughout the summer. 
Estimating and tracking hypoxic volume in real time can improve 

understanding of the severity of hypoxia throughout the summer 
because the data used to estimate hypoxic volume is collected at most 
once every 2 weeks and is typically not publicly released for several 
months after collection because of required quality control protocols. As 
such, it is not possible to estimate the volume of hypoxic conditions in 
the Bay from the observed data until after those conditions have passed. 
An initial webpage and graphics were created to track hypoxic volume 
throughout the summer and relate the amount of hypoxia to years past 
(Fig. 10). At the request of stakeholders and managers, graphics were 

Fig. 8. Real-time graphics for bottom DO from August 7, 2020. Locations of CB5.1 and CB7.1 are the two southern most dots shown in Fig. 9, respectively. The 
dashed grey line indicates the day of the forecast. 
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then developed and added to the webpage to show model-data com
parisons in near real time, comparing the model-estimated and data- 
estimated hypoxic volume throughout the summer (Fig. 11). To 
develop the data-estimated hypoxic volumes for overlay on the model- 
estimated hypoxic volumes, the authors are provided preliminary 
WQMP data shortly after it is collected and estimate a data-based hyp
oxic volume based on an inverse-distance weighted interpolation (Bever 
et al., 2013). 

Focused salinity graphics are being developed as part of examining 
the effects of ocean acidification on shellfish and aquaculture in the Bay. 
Initially, pH, alkalinity, and ΩAR maps were created for possible use by 

oyster aquaculture to understand if water conditions would be unsuit
able for flow-through systems. However, as a result of several recent wet 
years in the region, the stakeholders also expressed interest in salinity. 
As a result, surface and bottom salinity maps focused on specific areas of 
the Bay were added to the VIMS website and preliminary time series 
salinity figures were developed for potential inclusion on the website. 

5. Potential future additions and improvements to the forecast 
system 

Notable areas of future expansion and improvements to the forecast 

Fig. 9. Real-time graphics displaying the depth below the water surface to 3 mg/L DO before (upper) and after (lower) the passage of Hurricane Isais in August 2020 
as (A,C) vertical profiles and (B,D) spatial maps. Black dots on the maps indicate the location of the vertical profiles with left-to-right profiles corresponding to north 
to south on the map. 
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system include real-time model-data comparisons to high-frequency 
continuous monitoring data, real-time data assimilation, increased 
duration of the forecasts, incorporation of fish habitat models, and a 
higher-resolution Bay-wide model grid or high-resolution nested grids 
over regions of interest to stakeholders. Real-time continuous moni
toring water level, salinity, temperature, and dissolved oxygen data in 

the Chesapeake Bay are available through various agencies. These data 
could be used to evaluate model accuracy in real time, or incorporated 
into the nowcast portion of each daily model run to potentially improve 
the accuracy of the forecasts. For example, the IOOS Regional Associa
tion for the Pacific Northwest, NANOOS, has real-time model-data 
comparisons to mooring data at many locations and the MARACOOS 

Fig. 10. Daily hypoxic volume (top) and total annual hypoxic volume (bottom) through October 1, 2019.  

Fig. 11. Daily stacked hypoxic volume (shading) for different regions of the Bay with data-based hypoxic volume estimates (dots and uncertainty bars) at the end of 
summer 2019. Uncertainty bars are based on the authors unpublished data. 
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Chesapeake Bay OceansMap webpage allows for a basic model-data 
comparison at select mooring locations. 

The 2-day duration of the forecasts could be lengthened to provide 
longer environmental forecasts (Ross et al., 2020). However, the 
lengthening of the duration of the forecasts would necessitate retrieving 
all the necessary model inputs from the original sources and developing 
methods to convert those data and model products to what is required by 
CBEFS. Lengthening the forecasts from 2 days to 5 days is planned but 
has not yet been conducted. Lengthening the duration of the forecasts 
would improve the ability of the forecast to be further utilized by 
stakeholders by providing more time to understand the upcoming water 
quality conditions and incorporate the information into their decision 
making. 

Output from numerical models is more and more frequently being 
used in combination with fish habitat analyses and fish habitat models to 
estimate favorable habitat for fishes (e.g., Bever et al., 2016; Scales et al., 
2017; Crear et al., 2020a, 2020b). Fish habitat models could be incor
porated into CBEFS to continually estimate favorable habitat locations 
and track estimates of habitat area or volume through time. The prob
ability of encountering harmful algal blooms could also be added to 
CBEFS to help park or beach managers and the public understand the 
likelihood of encountering harmful algal blooms during water-based 
recreation. 

A higher-resolution model grid would better represent the bathym
etry throughout the Bay and tributaries, which, based on Ye et al. 
(2018), may improve the accuracy of the model. While the current 
CBEFS grid is sufficient for anglers in the mainstem of the Bay, aqua
culture stakeholders have requested model output more focused on their 
individual locations. A higher-resolution model would facilitate fore
casts more focused on smaller areas than the Bay-wide or tributary-wide 
maps currently provided. Increasing the horizontal resolution of the 
model grid by about a factor of 3 in both horizontal directions is being 
done now but has not yet been incorporated into CBEFS. 

6. Conclusions 

A real-time environmental forecast system for the waters of Ches
apeake Bay (CBEFS) was setup using a well-established open-source 
model and has been simulating environmental conditions daily since 
2017. CBEFS simulates 1 day of nowcast followed by 2 days of forecast 
nightly, generates graphics, displays the graphics online, and makes the 
model output available in real time through a THREDDS server. Online 
graphics have continually been revised and expanded based on feedback 
from a diverse group of stakeholders. CBEFS leverages work already 
being done operationally by NOAA for the creation of daily input files 
for the forecast system. This technique of leveraging previous work to 
efficiently develop a hydrodynamic and biogeochemical forecast 
modeling system can be done anywhere that already has a hydrody
namic modeling forecast system, even if the hydrodynamic models are 
different. 

Further examining the model accuracy demonstrated that scaling the 
tributary freshwater inflows to better match the total terrestrial fresh
water inflow to the Bay improved the accuracy of the forecast system. 
Scaling the wind speed based on data over the Bay water improved the 
accuracy of bottom salinity but decreased the accuracy of bottom dis
solved oxygen. Based on this analysis, the scaling of terrestrial fresh
water inflow was incorporated into the forecast system to improve the 
accuracy. Future efforts to improve CBEFS will focus on increasing the 
horizontal resolution, lengthening the duration of the forecasts, and 
adding real-time model-to-data comparisons onto the website. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors thank David Forrest (VIMS), Raleigh Hood (UMCES), 
and VIMS/W&M IT for help with various aspects of the initial setup, 
THREDDS data server, and general IT support. David Malmquist (VIMS) 
has been instrumental in helping with the VIMS CBEFS website and 
annual Dead Zone Reports based on CBEFS. Extension Specialists Sus
anna Musick and Karen Hudson (VIMS) led stakeholder outreach ac
tivities for recreational anglers and aquaculturists, respectively. The 
authors acknowledge William & Mary Research Computing for 
providing computational resources and/or technical support that have 
contributed to the results reported within this paper (https://www.wm. 
edu/it/rc). This paper is the result of research funded by NOAA’s Ocean 
Acidification Program under award NA18OAR0170430 and NOAA’s 
National Center for Coastal Ocean Science under award 
NA16NOS4780207, both to the Virginia Institute of Marine Science. The 
authors also acknowledge funding from the Mid-Atlantic Regional As
sociation Coastal Ocean Observing System under award 
NA16NOS0120020. This is Virginia Institute of Marine Science contri
bution number 4003. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envsoft.2021.105036. 

Software and data availability 

Documentation and source code for the numerical model used in the 
forecast system (ROMS) are publicly available at www.myroms.org. The 
cruise-based data used in this manuscript are publicly available through 
the Chesapeake Bay Program online data server at http://data.ch 
esapeakebay.net/WaterQuality. Model output from the forecast system 
for select variables is publicly available through MARACOOS at htt 
p://data.oceansmap.com/eds_thredds/catalog/EDS/VIMS_ROMS/cat 
alog.html. Because of continual improvements to the forecast system, 
the model output on the THREDDS server may not be the product of a 
single consistent setup. 
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